Code: 20EE4501E

III B.Tech - I Semester –Supplementary Examinations NOVEMBER 2023

COMPUTER ORGANIZATION & ARCHITECTURE (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>						
1.	a)	Explain Shift Micro-operations with a neat diagram.	10 M			
	b)	Demonstrate the hardware implementation of one stage	4 M			
		of a logic circuit				
	•	OR				
2.	a)	Explain the following with respect to memory transfer	7 M			
		i) Memory read				
		ii) Memory write				
	b)	Develop a Bus using Multiplexers.	7 M			
	<u>UNIT – II</u>					
3.	a)	Explain in detail about Computer Registers with examples.	7 M			
	b)	Explain in detail about Memory Reference Instructions.	7 M			
OR						
4.	a)	Demonstrate the different phases of the instruction	6 M			
		cycle, including fetch and decode.				
	b)	Explain the role of input-output instructions in	8 M			

		computer organization How are those instructions used	
		computer organization. How are these instructions used	
		to manage data transfer between the CPU and external	
		devices?	
		UNIT-III	
			0 1/1
5.	a)		8 M
		in the context of CPU operation? How do they affect	
		the flow of a program?	
	(b)	1	6 M
		and explain their role in arithmetic and logical	
		operations.	
		OR	
6.	a)	Demonstrate various addressing modes used in CPU	8 M
		instruction sets. Provide examples.	
	b)	Compare and contrast the Register Stack and Memory	6 M
		Stack. What are their advantages and disadvantages in	
		different scenarios?	
	1 .	<u>UNIT – IV</u>	
7.	a)	Explain Booth's Multiplication Algorithm with an	10 M
		example. How does it work, and what are its	
		advantages in computer arithmetic?	
	b)	Describe the hardware organization of associative	4 M
		memory.	
		OR	
8.	a)	Compare and contrast associative mapping, direct	8 M
		mapping, and set-associative mapping in cache memory	
		organization. What are the trade-offs between these	
		mapping techniques?	
L			

	b)	How associative memory is differ from conventional	6 M
		RAM?	
		$\underline{\mathbf{UNIT} - \mathbf{V}}$	
9.	a)	Analyze the concept of priority interrupt handling. How	6 M
		does daisy-chaining work in a priority interrupt system?	
	b)	Describe asynchronous data transfer in the context of	8 M
		I/O. What are the key elements of asynchronous data	
		transfer, including strobe control and handshaking?	
	•	OR	
10.	a)	Analyze the working nature of instruction pipe line.	8 M
	b)	Interpret the concept of parallel processing in computer	6 M
		systems.	